## East Midlands Gateway Phase 2 (EMG2)

Document DCO 6.14D/MCO 6.14D

**ENVIRONMENTAL STATEMENT** 

**Volume 2 Technical Appendices** 

Appendix 14D

# EMG2 Technical Note: Surface Water Sampling

July 2025

The East Midlands Gateway Phase 2 and Highway Order 202X and The East Midlands Gateway Rail Freight and Highway (Amendment) Order 202X



## EMG Phase 2, Derby

## **Technical note: Surface Water Sampling**

October 2024

**CLIENT: SEGRO Plc** 

**PROJECT REFERENCE: 146959** 

DOCUMENT NUMBER: TN01\_Rev2

| Prepared by    | Approved by    | Date       |
|----------------|----------------|------------|
| Oliver Wedlake | Dicken Maclean | 18/10/2024 |

This document has been prepared in accordance with procedure OP/P02 of the Fairhurst Quality and Environmental Management System

This document has been prepared in accordance with the instructions of the client, and for their sole and specific use. Any other persons who use any information contained herein do so at their own risk.

#### 1 Surface Water Sampling

Fairhurst was appointed by SEGRO Plc to carry out a surface water sampling and testing at the East Midlands Gateway green site. South of the East Midlands Airport, Ashby Road, DE74 2TN, England, United Kingdom DE74 2TN, National Grid Ref SK 46061 25289.

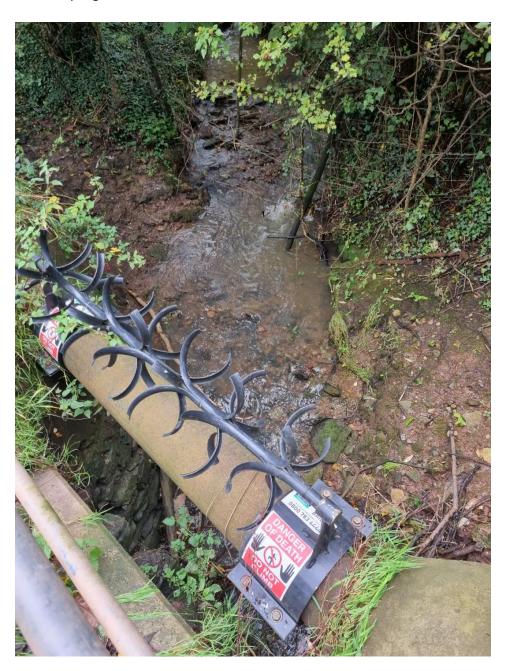
The sampling locations were designed by Fairhurst with comment from Frog Environmental, who requested the inclusion of SW4.

On the  $2^{nd}$  of October Structural Soils carried out a surface water sampling suite for each of four locations across the EMG phase 2 area. The surface water sampling included in situ parameters and sample preservation as required for the testing suite. See Appendix A for the layout for sample locations.

The locations tested are designated SW1-4 and were taken at water features such as streams or irrigation ditches. The testing suite required is included in Appendix B. All testing was conducted by Envirolab except the acrylamide which was carried out by RPS. With the results laid out in Appendix C.

In situ parameter readings and notes on sampling is presented in Appendix D.

Due to an absence of surface water at the proposed location of SW1 on the day of testing, the location was revised and SW1 was moved to a nearby stream 20m West of the original location.


The surface water testing results have been presented as factual only.

| A. PHOTOS & INVESTIGATION PLAN |   |             |                   |             |  |
|--------------------------------|---|-------------|-------------------|-------------|--|
|                                | Þ | <b>4.</b> F | PHOTOS & INVESTIG | SATION PLAN |  |

## Photo of SW1 sampling location:



## SW3 sampling location :



## SW4 sampling location:





## Legend

- Boundary
- Surface water sampling plan

150 m

# FAIRHURST

Project Title

East Midlands Gateway Phase 2

Surface Water Sampling Location Plan

| Project Number   | 148749 |
|------------------|--------|
| Drawn By         | OW     |
| Checker/Approver |        |

Drawing number

00

## B. Testing Scope

| Sample Type   | Determinand                           | Accreditation<br>Status | Detection<br>Limit | Units     |
|---------------|---------------------------------------|-------------------------|--------------------|-----------|
| Surface Water | рН                                    | UKAS                    | +/-0.1             | pH units  |
| Surface Water | Electrical Conductivity               | None                    | <10                | μS/cm     |
| Surface Water | Total Suspended Solids                | UKAS                    | 2                  | mg/l      |
| Surface Water | Turbidity                             | None                    | 0.1                | NTU       |
|               |                                       |                         |                    |           |
| Surface Water | Biochemical Oxygen Demand (BOD)       | UKAS                    | <2                 | mg/l      |
| Surface Water | Chemical Oxygen Demand (COD)          | UKAS                    | <2                 | mg/l      |
| Surface Water | Dissolved Orga3nic Carbon (DOC)       |                         |                    |           |
|               |                                       |                         |                    |           |
| Surface Water | Ammonium (NH4)                        | UKAS                    | <15                | μg/l      |
| Surface Water | Ammoniacal Nitrogen (N)               | UKAS                    | <15                | ug/l      |
| Surface Water | Ammonia (NH3)                         | UKAS                    | <15                | μg/l      |
| Surface Water | Nitrate (as N03)                      | UKAS                    | < 0.01             | mg/l      |
| Surface Water | Nitrite (as N02)                      | UKAS                    | < 1                | μg/l      |
| Surface Water | Total Oxidised Nitrogen (TON)         | None                    | < 0.3              | mg/l      |
| Surface Water | Dissolved (Reactive) Phosphate (as P) | UKAS                    | <20                | μg/l      |
| Surface Water | Phosphorus (total)                    | UKAS                    | <50                | μg/l      |
|               |                                       |                         |                    |           |
| Surface Water | Alkalinity (as CaCO3)                 | UKAS                    | < 3                | mgCaCO3/I |
| Surface Water | Hardness - Total (as CaCO3)           | UKAS                    | 1                  | mgCaCO3/I |
| Surface Water | Calcium (dissolved)                   | UKAS                    | <0.012             | mg/l      |
| Surface Water | Sulphate as SO4 (water soluble)       | UKAS                    | 1                  | mg/l      |
| Surface Water | Acrylamide                            | UKAS                    |                    |           |
|               |                                       |                         |                    |           |
| Surface Water | Arsenic (dissolved)                   | UKAS                    |                    | μg/l      |
| Surface Water | Aluminium (dissolved)                 | UKAS                    | < 1                | μg/l      |
| Surface Water | Boron (dissolved)                     | UKAS                    | <10                | μg/l      |
| Surface Water | Cadmium (dissolved)                   | UKAS                    | < 0.02             | μg/l      |
| Surface Water | Chloride                              | UKAS                    | 1                  | mg/l      |
| Surface Water | Chromium III                          | UKAS                    | 1                  | μg/l      |
| Surface Water | Chromium VI                           | UKAS                    | 1                  | μg/l      |
| Surface Water | Copper (dissolved)                    | UKAS                    | < 0.5              | μg/l      |
| Surface Water | Cyanide (total)                       | UKAS                    |                    | ug/l      |
| Surface Water | Iron (dissolved)                      | UKAS                    | <4                 | μg/l      |
| Surface Water | Lead (dissolved)                      | UKAS                    | < 0.2              | μg/l      |
| Surface Water | Manganese (dissolved)                 | UKAS                    | < 0.05             | μg/l      |
| Surface Water | Mercury (dissolved)                   | UKAS                    | 0.5                | ug/l      |

| _                                  |                                                                                                                                                                                                                                                                                                  |       |       |        |  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------|--|
| Surface Water                      | Molybdenum (dissolved)                                                                                                                                                                                                                                                                           | UKAS  |       | μg/l   |  |
| Surface Water                      | Nickel (dissolved)                                                                                                                                                                                                                                                                               | UKAS  | < 0.5 | μg/l   |  |
| Surface Water Selenium (dissolved) |                                                                                                                                                                                                                                                                                                  | UKAS  |       | ug/l   |  |
| Surface Water                      | Zinc (dissolved)                                                                                                                                                                                                                                                                                 | UKAS  | < 0.5 | μg/l   |  |
|                                    |                                                                                                                                                                                                                                                                                                  |       |       |        |  |
| Surface Water                      | Phenols (total)                                                                                                                                                                                                                                                                                  | UKAS  | 0.03  | mg/l   |  |
|                                    |                                                                                                                                                                                                                                                                                                  |       |       |        |  |
| Surface Water                      | Benzene, Toulene, Ethylbenzene,                                                                                                                                                                                                                                                                  | UKAS  | 1     | μg/l   |  |
|                                    | p&m-xylene, o-xylene, MTBE                                                                                                                                                                                                                                                                       |       | _     | F-0/ · |  |
|                                    |                                                                                                                                                                                                                                                                                                  |       |       |        |  |
| Surface Water                      | 16 speciated PAH Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, (Benzo(a)-pyrene (BaP), Benzo(b)- fluor-anthene, Benzo(k)-fluor- anthene, Benzo(g,h,i)-perylene and Indeno(1,2,3-cd)-pyrene. Benzo(a)pyrene) | UKAS  | 0.001 | ug/l   |  |
| Surface Water                      | Total EPA PAH                                                                                                                                                                                                                                                                                    |       |       |        |  |
|                                    |                                                                                                                                                                                                                                                                                                  |       |       |        |  |
|                                    |                                                                                                                                                                                                                                                                                                  |       |       |        |  |
| Surface Water                      | TPHCWG Aliphatic and Aromatic (C8-<br>C10, C10-C12, C12-C16, C16-C21,<br>C21-C35, C35-C40) and Total                                                                                                                                                                                             | UNACC | 0.01  | ug/l   |  |

| C. | Testing Results |  |
|----|-----------------|--|
|    |                 |  |
|    |                 |  |
|    |                 |  |



## FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 24/09538

**Issue Number:** 1 **Date:** 14 October, 2024

Client: Structural Soils Limited (Castleford)

The Potteries Pottery Street Castleford West Yorkshire

UK

WF10 1NJ

Project Manager: Richard Law

Project Name: EMG2
Project Ref: 765938
Order No: N/A
Date Samples Received: 03/10/24
Date Instructions Received: 03/10/24
Date Analysis Completed: 14/10/24

Approved by:

Gemma Berrisford

**Deputy Client Services Supervisor** 





| Nitrate (w).*  Nitrogen, Total Oxidised TOXN (w).*  1.2.3  1.2.4  1.2.3  1.2.0  1.2.4  1.2.3  1.2.0  1.2.4  1.2.3  1.2.0  1.2.0  1.2.4  1.2.3  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |            |            |            |            | <br>ect Ret: 76 |                |       |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------|------------|------------|------------|-----------------|----------------|-------|--------------|
| Coline Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lab Sample ID                                       | 24/09538/1 | 24/09538/2 | 24/09538/3 | 24/09538/4 |                 |                |       |              |
| Depth to Top   Depth to Top   Depth to Top   Depth to Bostom   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Client Sample No                                    |            |            |            |            |                 |                |       |              |
| Open Tr O Bottom         Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Client Sample ID                                    | SW1        | SW2        | SW3        | SW4        |                 |                |       |              |
| PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Depth to Top                                        |            |            |            |            |                 |                |       |              |
| PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Depth To Bottom                                     |            |            |            |            |                 |                | ion   |              |
| PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date Sampled                                        | 02-Oct-24  | 02-Oct-24  | 02-Oct-24  | 02-Oct-24  |                 |                | etect | ٠,           |
| PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample Type                                         | WATER - SW | WATER - SW | WATER - SW | WATER - SW |                 |                | of D  | od re        |
| Exercisal conductivity @ 20degC (w),**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample Matrix Code                                  | N/A        | N/A        | N/A        | N/A        |                 | Units          | Limit | Meth         |
| COD (settled), *  22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pH (w) <sub>A</sub> #                               | 8.15       | 8.00       | 8.09       | 7.81       |                 | рН             | 0.01  | A-T-031w     |
| Secretary Control Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Electrical conductivity @ 20degC (w) <sub>A</sub> # | 455        | 500        | 511        | 633        |                 | µs/cm          | 10    | A-T-037w     |
| Akallahility (total) (w) Colorimetry.**  228   212   220   220   220   220   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COD (settled) <sub>A</sub> #                        | 22         | 25         | 31         | 53         |                 | mg/l           | 5     | A-T-034w     |
| Hardness Total,**   Animonitarial nitrogen as NH3   Animonitaria nitrogen as NH3   Animonitarial nitrogen as NH3   Animonitaria nitrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BOD (settled, 5 day)A                               | 2          | 2          | 1          | 6          |                 | mg/l           | 1     | A-T-048      |
| Total Suspended Solids (w). 2  Total Suspended Solids (w). 2  Total Suspended Solids (w). 3  Total Suspended Solids (w). 3  Total Suspended Solids (w). 3  Total Suspended Solids (w). 4  Total Suspended Solids (w). 4  Total Suspended Solids (w). 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Alkalinity (total) (w) Colorimetry <sup>#</sup>     | 228        | 212        | 220        | 209        |                 | mg/l Ca<br>CO3 | 20    | A-T-038w     |
| Ammonitari Introgen as N(w).*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hardness Total <sub>A</sub> #                       | 251        | 284        | 294        | 334        |                 |                | 4     | A-T-049w     |
| Ammonium / Ammoniacal nitrogen as NH4 (w).x <sup>4</sup> Ammoniacal Ammoniacal Nitrogen as NH4 (w).x <sup>4</sup> Ammoniacal Ammoniacal Nitrogen as NH4 (w).x <sup>4</sup> Chloride (w).x <sup>4</sup> Ch | Total Suspended Solids (w) <sub>A</sub> #           | 20         | 46         | 20         | 62         |                 | mg/l           | 10    | A-T-036w     |
| Marian   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ammoniacal nitrogen as N (w) <sub>A</sub> #         | <0.05      | 0.06       | 0.06       | 0.82       |                 | mg/l           | 0.05  | A-T-033w     |
| (w)s.**  Chloride (w)s.**  22 35 38 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     | <0.065     | 0.079      | 0.080      | 1.055      |                 | mg/l           | 0.065 | A-T-033w     |
| Nitrite (w).*    Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*   Nitrite (w).*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | <0.061     | 0.074      | 0.076      | 0.998      |                 | mg/l           | 0.061 | A-T-033w     |
| Nitrate (w).*  Nitrogen, Total Oxidised TOXN (w).*  1.2.3  1.2.4  1.2.3  1.2.0  1.2.4  1.2.3  1.2.0  1.2.4  1.2.3  1.2.0  1.2.0  1.2.4  1.2.3  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0  1.2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chloride (w) <sub>A</sub> #                         | 22         | 35         | 38         | 43         |                 | mg/l           | 1     | A-T-026w     |
| Nitrogen, Total Oxidised TOXN (w) <sub>A</sub> * 0.7 2.8 2.8 12.0 mg/l 0.1 A-T-20lev (Phosphate (orthophosphate) as P (w) <sub>A</sub> * 0.025 0.100 0.076 0.184 mg/l 0.007 A-T-20lev (Phosphorus, Total (dissolved) <sub>A</sub> 25 138 101 317 mg/l 0.005 A-T-20lev (Phosphorus, Total (dissolved) <sub>A</sub> 28 35 34 51 mg/l 0.005 mg/l 0.005 A-T-20lev (Phosphorus, Total (dissolved) <sub>A</sub> 28 35 34 51 mg/l 0.005 mg/l 0.005 A-T-20lev (Phonols - Total by HPLC (w) <sub>A</sub> 0.005 0.005 0.005 0.005 0.005 0.005 mg/l 0.005 mg/l 0.005 A-T-20lev (Phonols - Total by HPLC (w) <sub>A</sub> 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nitrite (w) <sub>A</sub> #                          | <0.1       | <0.1       | <0.1       | 0.6        |                 | mg/l           | 0.1   | A-T-026w (N) |
| Phosphate (orthophosphate) as P (w), A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nitrate (w) <sub>A</sub> #                          | 2.9        | 12.4       | 12.3       | 52.2       |                 | mg/l           | 0.1   | A-T-026w (N) |
| Phosphorus, Total (dissolved), 25 138 101 317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nitrogen, Total Oxidised TOxN (w) <sub>A</sub> #    | 0.7        | 2.8        | 2.8        | 12.0       |                 | mg/l           | 0.1   | A-T-026w (N) |
| Sulphate (w) <sub>A</sub> " 28 35 34 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Phosphate (orthophosphate) as P (w) <sub>A</sub> #  | 0.025      | 0.100      | 0.076      | 0.184      |                 | mg/l           | 0.007 | A-T-026w     |
| Cyanide (total) (w) a*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Phosphorus,Total (dissolved) <sub>A</sub>           | 25         | 138        | 101        | 317        |                 | μg/l           | 20    | A-T-072w     |
| Phenois - Total by HPLC (W) <sub>A</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sulphate (w) <sub>A</sub> #                         | 28         | 35         | 34         | 51         |                 | mg/l           | 1     | A-T-026w     |
| DOC - Dissolved Organic Carbon (w) A" 8.4 8.3 7.9 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cyanide (total) (w) <sub>A</sub> #                  | <0.005     | <0.005     | <0.005     | <0.005     |                 | mg/l           | 0.005 | A-T-042wTCN  |
| Aluminium (dissolved), a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Phenois - Total by HPLC (w) <sub>A</sub>            | <0.01      | <0.01      | <0.01      | <0.01      |                 | mg/l           | 0.01  | A-T-050w     |
| Arsenic (dissolved)A <sup>#</sup> Boron (dissolved)A <sup>#</sup> 80  76  78  75  80  µg/l  10  A-T-025w  Cadmium (dissolved)A <sup>#</sup> 40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  40.2  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DOC - Dissolved Organic Carbon (w) <sub>A</sub> #   | 8.4        | 8.3        | 7.9        | 14.9       |                 | mg/l           | 2     | A-T-032w     |
| Boron (dissolved)λ <sup>#</sup> 80         76         78         75         μg/l         10         Α-Τ-025w           Cadmium (dissolved)λ <sup>#</sup> <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Aluminium (dissolved) <sub>A</sub>                  | 126        | 20         | 166        | 22         |                 | μg/l           | 10    | A-T-072w     |
| Cadmium (dissolved)A <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Arsenic (dissolved) <sub>A</sub> #                  | 1          | 1          | 1          | 2          |                 | μg/l           | 1     | A-T-025w     |
| Calcium (dissolved) a 67 76 78 90 mg/l 1 A-T-049w Copper (dissolved) a 13 9 10 7 pg/l 4 A-T-025w Chromium (dissolved) a 1 8 8 < 1 pg/l 1 A-T-049w Chromium (hexavalent) (w) a < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 mg/l 0.01 A-T-040w Chromium (trivalent) (w) 2 284 58 278 88 pg/l 1 pg/l 10 A-T-025w Lead (dissolved) a 2 < 1 2 2 pg/l 1 A-T-025w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Boron (dissolved) <sub>A</sub> #                    | 80         | 76         | 78         | 75         |                 | μg/l           | 10    | A-T-025w     |
| Copper (dissolved) <sub>A</sub> # 13 9 10 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cadmium (dissolved) <sub>A</sub> #                  | <0.2       | <0.2       | <0.2       | <0.2       |                 | μg/l           | 0.2   | A-T-025w     |
| Chromium (dissolved) <sub>A</sub> # 1 8 8 4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Calcium (dissolved) <sub>A</sub> #                  | 67         | 76         | 78         | 90         |                 | mg/l           | 1     | A-T-049w     |
| Chromium (hexavalent) (w) A <sup>#</sup> <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 mg/l 0.01 A-T-040w  Chromium (trivalent) (w) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 mg/l 0.01 Calc  Iron (dissolved) A <sup>#</sup> 284 58 278 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Copper (dissolved) <sub>A</sub> #                   | 13         | 9          | 10         | 7          |                 | μg/l           | 4     | A-T-025w     |
| Chromium (trivalent) (w)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chromium (dissolved) <sub>A</sub> #                 | 1          | 8          | 8          | <1         |                 | μg/l           | 1     | A-T-025w     |
| Iron (dissolved) <sub>A</sub> #     284     58     278     88     μg/l     10     A-T-025w       Lead (dissolved) <sub>A</sub> #     2     <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chromium (hexavalent) (w) <sub>A</sub> #            | <0.01      | <0.01      | <0.01      | <0.01      | <br>            | mg/l           | 0.01  | A-T-040w     |
| Lead (dissolved) <sub>A</sub> # 2 <1 2 2 µg/l 1 A-T-025w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chromium (trivalent) (w)                            | <0.01      | <0.01      | <0.01      | <0.01      |                 | mg/l           | 0.01  | Calc         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Iron (dissolved) <sub>A</sub> #                     | 284        | 58         | 278        | 88         |                 | μg/I           | 10    | A-T-025w     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lead (dissolved) <sub>A</sub> #                     | 2          | <1         | 2          | 2          |                 | μg/I           | 1     | A-T-025w     |
| Manganese (dissolved) <sub>A</sub> # 26 11 15 10 μg/l 1 A-T-025w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Manganese (dissolved) <sub>A</sub> #                | 26         | 11         | 15         | 10         | <br>            | μg/l           | 1     | A-T-025w     |



|                                       |            |            |            |            | ect itel. 70 |       |                    |                   |
|---------------------------------------|------------|------------|------------|------------|--------------|-------|--------------------|-------------------|
| Lab Sample ID                         | 24/09538/1 | 24/09538/2 | 24/09538/3 | 24/09538/4 |              |       |                    |                   |
| Client Sample No                      |            |            |            |            |              |       |                    |                   |
| Client Sample ID                      | SW1        | SW2        | SW3        | SW4        |              |       |                    |                   |
| Depth to Top                          |            |            |            |            |              |       |                    |                   |
| Depth To Bottom                       |            |            |            |            |              |       | tion               |                   |
| Date Sampled                          | 02-Oct-24  | 02-Oct-24  | 02-Oct-24  | 02-Oct-24  |              |       | etec               | <del>6</del>      |
| Sample Type                           | WATER - SW | WATER - SW | WATER - SW | WATER - SW |              | s     | Limit of Detection | Method ref        |
| Sample Matrix Code                    | N/A        | N/A        | N/A        | N/A        |              | Units | Limi               | Meti              |
| Mercury (dissolved) <sub>A</sub> #    | <0.1       | <0.1       | <0.1       | <0.1       |              | μg/l  | 0.1                | A-T-025w          |
| Molybdenum (dissolved) <sub>A</sub> # | 3.7        | 3.2        | 3.1        | 0.9        |              | μg/l  | 0.5                | A-T-025w          |
| Nickel (dissolved) <sub>A</sub> #     | 3          | 2          | 2          | 3          |              | μg/l  | 2                  | A-T-025w          |
| Selenium (dissolved) <sub>A</sub> #   | <1         | <1         | <1         | <1         |              | μg/l  | 1                  | A-T-025w          |
| Zinc (dissolved) <sub>A</sub> #       | 24         | 11         | 15         | 6          |              | μg/l  | 2                  | A-T-025w          |
| Acrylamide (w) <sub>A</sub>           | Appended   | Appended   | Appended   | Appended   |              | μg/l  | 0.1                | Subcon RPS<br>MHw |
| Turbidity (w) <sub>A</sub>            | 14.0       | 32.1       | 24.7       | 43.4       |              | NTU   | 0.1                | Turbidity Meter   |



|                                          |            |            |            |            | Chentino | ect Ret: 76 | 3930 |       |                    |            |
|------------------------------------------|------------|------------|------------|------------|----------|-------------|------|-------|--------------------|------------|
| Lab Sample ID                            | 24/09538/1 | 24/09538/2 | 24/09538/3 | 24/09538/4 |          |             |      |       |                    |            |
| Client Sample No                         |            |            |            |            |          |             |      |       |                    |            |
| Client Sample ID                         | SW1        | SW2        | SW3        | SW4        |          |             |      |       |                    |            |
| Depth to Top                             |            |            |            |            |          |             |      |       |                    |            |
| Depth To Bottom                          |            |            |            |            |          |             |      |       | ion                |            |
| Date Sampled                             | 02-Oct-24  | 02-Oct-24  | 02-Oct-24  | 02-Oct-24  |          |             |      |       | etec               | <u>~</u>   |
| Sample Type                              | WATER - SW | WATER - SW | WATER - SW | WATER - SW |          |             |      | S S   | Limit of Detection | Method ref |
| Sample Matrix Code                       | N/A        | N/A        | N/A        | N/A        |          |             |      | Units | Limi               | Meth       |
| PAH 16MS (w)                             |            |            |            |            |          |             |      |       |                    |            |
| Acenaphthene (w) <sub>A</sub> #          | <0.01      | <0.01      | <0.01      | <0.01      |          |             |      | μg/l  | 0.01               | A-T-019w   |
| Acenaphthylene (w) <sub>A</sub> #        | <0.01      | <0.01      | <0.01      | <0.01      |          |             |      | μg/l  | 0.01               | A-T-019w   |
| Anthracene (w) <sub>A</sub> #            | <0.01      | <0.01      | <0.01      | <0.01      |          |             |      | μg/l  | 0.01               | A-T-019w   |
| Benzo(a)anthracene (w) <sub>A</sub> #    | <0.01      | 0.02       | <0.01      | <0.01      |          |             |      | μg/l  | 0.01               | A-T-019w   |
| Benzo(a)pyrene (w) <sub>A</sub> #        | <0.01      | 0.02       | <0.01      | <0.01      |          |             |      | μg/l  | 0.01               | A-T-019w   |
| Benzo(b)fluoranthene (w) <sub>A</sub> #  | 0.01       | 0.02       | <0.01      | <0.01      |          |             |      | μg/l  | 0.01               | A-T-019w   |
| Benzo(ghi)perylene (w) <sub>A</sub> #    | <0.01      | <0.01      | <0.01      | <0.01      |          |             |      | μg/l  | 0.01               | A-T-019w   |
| Benzo(k)fluoranthene (w) <sub>A</sub> #  | <0.01      | 0.01       | <0.01      | <0.01      |          |             |      | μg/l  | 0.01               | A-T-019w   |
| Chrysene (w) <sub>A</sub> #              | <0.01      | 0.02       | <0.01      | <0.01      |          |             |      | μg/l  | 0.01               | A-T-019w   |
| Dibenzo(ah)anthracene (w) <sub>A</sub> # | <0.01      | <0.01      | <0.01      | <0.01      |          |             |      | μg/l  | 0.01               | A-T-019w   |
| Fluoranthene (w) <sub>A</sub> #          | 0.01       | 0.05       | <0.01      | 0.02       |          |             |      | μg/l  | 0.01               | A-T-019w   |
| Fluorene (w) <sub>A</sub> #              | <0.01      | <0.01      | <0.01      | <0.01      |          |             |      | μg/l  | 0.01               | A-T-019w   |
| Indeno(123-cd)pyrene (w) <sub>A</sub> #  | <0.01      | <0.01      | <0.01      | <0.01      |          |             |      | μg/l  | 0.01               | A-T-019w   |
| Naphthalene (w) <sub>A</sub> #           | <0.01      | <0.01      | <0.01      | <0.01      |          |             |      | μg/l  | 0.01               | A-T-019w   |
| Phenanthrene (w) <sub>A</sub> #          | <0.01      | 0.02       | <0.01      | 0.01       |          |             |      | μg/l  | 0.01               | A-T-019w   |
| Pyrene (w) <sub>A</sub> #                | 0.01       | 0.04       | <0.01      | 0.01       |          |             |      | μg/l  | 0.01               | A-T-019w   |
| Total PAH 16MS (w) <sub>A</sub> #        | 0.03       | 0.20       | <0.01      | 0.04       |          |             |      | μg/l  | 0.01               | A-T-019w   |



|                                          |            |            |            |            | onone i roj | ect Kei. 70 |       |                    |              |
|------------------------------------------|------------|------------|------------|------------|-------------|-------------|-------|--------------------|--------------|
| Lab Sample ID                            | 24/09538/1 | 24/09538/2 | 24/09538/3 | 24/09538/4 |             |             |       |                    |              |
| Client Sample No                         |            |            |            |            |             |             |       |                    |              |
| Client Sample ID                         | SW1        | SW2        | SW3        | SW4        |             |             |       |                    |              |
| Depth to Top                             |            |            |            |            |             |             |       |                    |              |
| Depth To Bottom                          |            |            |            |            |             |             |       | uo                 |              |
| Date Sampled                             | 02-Oct-24  | 02-Oct-24  | 02-Oct-24  | 02-Oct-24  |             |             |       | Limit of Detection | <u>~</u>     |
| Sample Type                              | WATER - SW | WATER - SW | WATER - SW | WATER - SW |             |             | ,,    | t of D             | Method ref   |
| Sample Matrix Code                       | N/A        | N/A        | N/A        | N/A        |             |             | Units | Limit              | Meth         |
| TPH UKCWG (w) with Clean Up              |            |            |            |            |             |             |       |                    |              |
| Ali >C5-C6 (w) <sub>A</sub> #            | <1         | <1         | <1         | <1         |             |             | μg/l  | 1                  | A-T-022w     |
| Ali >C6-C8 (w) <sub>A</sub> #            | <1         | <1         | <1         | <1         |             |             | μg/l  | 1                  | A-T-022w     |
| Ali >C8-C10 (w) <sub>A</sub> #           | <5         | <5         | <5         | <5         |             |             | μg/l  | 5                  | A-T-055w     |
| Ali >C10-C12 (w) <sub>A</sub> #          | <5         | <5         | <5         | <5         |             |             | μg/l  | 5                  | A-T-055w     |
| Ali >C12-C16 (w) <sub>A</sub> #          | <5         | <5         | <5         | <5         |             |             | μg/l  | 5                  | A-T-055w     |
| Ali >C16-C21 (w) <sub>A</sub> #          | <5         | <5         | <5         | <5         |             |             | μg/l  | 5                  | A-T-055w     |
| Ali >C21-C35 (w) <sub>A</sub> #          | 14         | 17         | <5         | 20         |             |             | μg/l  | 5                  | A-T-055w     |
| Ali >C35-C44 (w) <sub>A</sub>            | <5         | <5         | <5         | <5         |             |             | μg/l  | 5                  | A-T-055w     |
| Total Aliphatics (w) <sub>A</sub>        | 14         | 17         | <5         | 20         |             |             | μg/l  | 5                  | Calc-As Recd |
| Aro >C5-C7 (w) <sub>A</sub> #            | <1         | <1         | <1         | <1         |             |             | μg/l  | 1                  | A-T-022w     |
| Aro >C7-C8 (w) <sub>A</sub> #            | <1         | <1         | <1         | <1         |             |             | μg/l  | 1                  | A-T-022w     |
| Aro >C8-C10 (w) <sub>A</sub>             | <5         | <5         | <5         | <5         |             |             | μg/l  | 5                  | A-T-055w     |
| Aro >C10-C12 (w) <sub>A</sub> #          | <5         | <5         | <5         | <5         |             |             | μg/l  | 5                  | A-T-055w     |
| Aro >C12-C16 (w) <sub>A</sub> #          | <5         | 5          | <5         | 8          |             |             | μg/l  | 5                  | A-T-055w     |
| Aro >C16-C21 (w) <sub>A</sub> #          | 6          | 7          | <5         | 13         |             |             | μg/l  | 5                  | A-T-055w     |
| Aro >C21-C35 (w) <sub>A</sub> #          | <10        | <10        | <10        | <10        |             |             | μg/l  | 10                 | A-T-055w     |
| Aro >C35-C44 (w) <sub>A</sub>            | <5         | <5         | <5         | <5         |             |             | μg/l  | 5                  | A-T-055w     |
| Total Aromatics (w) <sub>A</sub>         | <10        | 12         | <10        | 21         |             |             | μg/l  | 10                 | Calc-As Recd |
| TPH (Ali & Aro >C5-C44) (w) <sub>A</sub> | 20         | 29         | <10        | 41         |             |             | μg/l  | 10                 | Calc-As Recd |
| BTEX - Benzene (w) <sub>A</sub> #        | <1         | <1         | <1         | <1         |             |             | μg/l  | 1                  | A-T-022w     |
| BTEX - Toluene (w) <sub>A</sub> #        | <1         | <1         | <1         | <1         |             |             | μg/l  | 1                  | A-T-022w     |
| BTEX - Ethyl Benzene (w) <sub>A</sub> #  | <1         | <1         | <1         | <1         |             |             | μg/l  | 1                  | A-T-022w     |
| BTEX - m & p Xylene (w) <sub>A</sub> #   | <1         | <1         | <1         | <1         |             |             | μg/l  | 1                  | A-T-022w     |
| BTEX - o Xylene (w) <sub>A</sub> #       | <1         | <1         | <1         | <1         |             |             | μg/l  | 1                  | A-T-022w     |
| MTBE (w) <sub>A</sub> #                  | <1         | <1         | <1         | <1         |             |             | μg/l  | 1                  | A-T-022w     |
|                                          |            |            |            |            |             |             |       |                    |              |



#### **Report Notes**

- •This report shall not be reproduced, except in full, without written approval from Envirolab.
- •The client Sample No, Client Sample ID, Depth to top, Depth to Bottom and Date Sampled are all provided by the client and can affect the validity of results.
- •The residue of any samples contained within this report, and any received within the same delivery, will be disposed of **four weeks** after the initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.
- •Analytical results reflect the quality of the sample at the time of analysis only.
- •Opinions and Interpretations expressed are outside our scope of accreditation.
- •A deviating sample report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.
- •If a sample is outside of the calibration range or affected by interferences then it may need diluting. This will result in the limit of detection (LOD) being raised.
- \*Subcontracted Analysis: Please see the appended report for any deviations, current LODs and accreditation status of the test.

| ney                       |                                                                                                       |
|---------------------------|-------------------------------------------------------------------------------------------------------|
| Superscript "#"           | Accredited to ISO 17025                                                                               |
| Superscript "M"           | Accredited to MCertS                                                                                  |
| Superscript "U"           | Individual result not accredited                                                                      |
| None of the above symbols | Analysis unaccredited                                                                                 |
| Subscript "A"             | Analysis performed on as-received Sample                                                              |
| Subscript "D"             | Analysis performed on the dried sample, crushed to pass 2mm sieve.                                    |
| Subscript "D" on Asbestos | Analysis performed on a dried aliquot of sample provided.                                             |
| Subscript "^"             | Analysis has dependant options against results. Details appear in the comments of your Sample receipt |
| IS                        | Insufficient Sample for analysis                                                                      |
| US                        | Unsuitable Sample for analysis                                                                        |
| NDP                       | No Determination Possible                                                                             |
| NAD                       | No Asbestos Detected                                                                                  |
| Trace                     | Asbestos found not suitable for Gravimetric Quantification – not enough to accurately weigh.          |
| N/A                       | Not applicable                                                                                        |

#### Asbestos

Identification: Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis

"Trace Asbestos Identified" will be reported if there is not enough present to verify the type.

Quantification: Generally a 2 stage process including visual identification, hand picking and weighing, and fibre counting. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking

and weighing (normally if the asbestos is present as free fibres). "TRACE" will be reported as a quantification result.

PLEASE INFORM THE LABORATORY IF YOU WOULD LIKE THE STAGE 3 SEDIMENTATION PROCESS CARRIED OUT. Note this will be subcontracted.

#### **Assigned Matrix Codes**

| 1     | SAND               | 6      | CLAY/LOAM                                                     | Α       | Contains Stones               |
|-------|--------------------|--------|---------------------------------------------------------------|---------|-------------------------------|
| 2     | LOAM               | 7      | OTHER                                                         | В       | Contains Construction Rubble  |
| 3     | CLAY               | 8      | Asbestos Bulk (Only Asbestos ID accredited)                   | С       | Contains visible hydrocarbons |
| 4     | LOAM/SAND          | 9      | Incinerator Ash (some Metals accredited)                      | D       | Contains glass / metal        |
| 5     | SAND/CLAY          |        |                                                               | Е       | Contains roots / twigs        |
| Note: | 7 8 9 matrices are | not co | overed by our ISO 17025 or MCertS accreditation, unless state | d ahove |                               |

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts

All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

#### TPH by method A-T-007:

For waters, free and visible oils are excluded from the sample used for analysis, so the reported result represents the dissolved phase only. Results "with Clean up" indicates samples cleaned up with Silica during extraction.

#### EPH CWG (method A-T-055) from TPH CWG:

EPH CWG results have humics mathematically subtracted through instrument calculation.

Where these humic substances have been identified in any IDs from "TPH CWG with clean up" please note that the concentration is NOT included in the quantified results but present in the ID for information.

#### Electrical Conductivity of water by method A-T-037:

Results greater than 12900µS/cm @ 250C / 11550µS/cm @ 200C fall outside the calibration range and as such are unaccredited.

Please contact your client manager if you require any further information.



24/09538

## **Envirolab Deviating Samples Report**

Hattersley Science & Technology Park, Stockport Road, Hattersley, SK14 3QU Tel. 0161 368 4921 email. ask@envlab.co.uk

**Client:** Structural Soils Limited (Castleford), The Potteries, Pottery Street, Castleford,

West Yorkshire, UK, WF10 1NJ

**Date Received:** 03/10/2024 (am)

**Project No:** 

Project: EMG2 Cool Box Temperatures (°C): 11.8

**Clients Project No: 765938** 

#### NO DEVIATIONS IDENTIFIED

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.



## **Envirolab Analysis Dates**

| Lab Sample ID          | 24/09538/1 | 24/09538/2 | 24/09538/3 | 24/09538/4 |  |
|------------------------|------------|------------|------------|------------|--|
| Client Sample No       |            |            |            |            |  |
| Client Sample ID/Depth | SW1        | SW2        | SW3        | SW4        |  |
| Date Sampled           | 02/10/24   | 02/10/24   | 02/10/24   | 02/10/24   |  |
| A-T-019w               | 07/10/2024 | 07/10/2024 | 07/10/2024 | 07/10/2024 |  |
| A-T-022w               | 08/10/2024 | 08/10/2024 | 08/10/2024 | 08/10/2024 |  |
| A-T-025w               | 10/10/2024 | 10/10/2024 | 10/10/2024 | 10/10/2024 |  |
| A-T-026w               | 04/10/2024 | 04/10/2024 | 04/10/2024 | 08/10/2024 |  |
| A-T-026w (N)           | 04/10/2024 | 04/10/2024 | 04/10/2024 | 04/10/2024 |  |
| A-T-031w               | 04/10/2024 | 04/10/2024 | 04/10/2024 | 04/10/2024 |  |
| A-T-032w               | 07/10/2024 | 07/10/2024 | 07/10/2024 | 07/10/2024 |  |
| A-T-033w               | 04/10/2024 | 04/10/2024 | 04/10/2024 | 04/10/2024 |  |
| A-T-034w               | 04/10/2024 | 04/10/2024 | 04/10/2024 | 04/10/2024 |  |
| A-T-036w               | 04/10/2024 | 04/10/2024 | 04/10/2024 | 04/10/2024 |  |
| A-T-037w               | 04/10/2024 | 04/10/2024 | 04/10/2024 | 04/10/2024 |  |
| A-T-038w               | 04/10/2024 | 04/10/2024 | 04/10/2024 | 04/10/2024 |  |
| A-T-040w               | 04/10/2024 | 04/10/2024 | 04/10/2024 | 04/10/2024 |  |
| A-T-042wTCN            | 04/10/2024 | 04/10/2024 | 04/10/2024 | 04/10/2024 |  |
| A-T-048                | 08/10/2024 | 08/10/2024 | 08/10/2024 | 08/10/2024 |  |
| A-T-049w               | 04/10/2024 | 04/10/2024 | 04/10/2024 | 04/10/2024 |  |
| A-T-050w               | 08/10/2024 | 07/10/2024 | 07/10/2024 | 07/10/2024 |  |
| A-T-055w               | 07/10/2024 | 07/10/2024 | 07/10/2024 | 07/10/2024 |  |
| A-T-072w               | 07/10/2024 | 07/10/2024 | 07/10/2024 | 07/10/2024 |  |
| Calc                   | 10/10/2024 | 10/10/2024 | 10/10/2024 | 10/10/2024 |  |
| Calc-As Recd           | 08/10/2024 | 08/10/2024 | 08/10/2024 | 08/10/2024 |  |
| Turbidity Meter        | 03/10/2024 | 03/10/2024 | 03/10/2024 | 03/10/2024 |  |

The above dates are the analysis completion dates, please note that these are not necessarily the date that the analysis was weighed/extracted.

**End of Report** 



## **Certificate of Analysis**

Report No.: 24-07825-1

Issue No.:

Date of Issue 14/10/2024

Customer Details: Envirolab Ltd, 7 - 8 Sandpits Business Park, Mottram Road, Hyde, Greater Manchester, SK14

3AR, United Kingdom

Customer Contact: Maleyka Owen-Agjef

Customer Order No.: P0755263

Customer Reference: Not Supplied

Quotation Reference: Q24-02084 (Issue: 11)

Description: 4 water samples

Date Received: 04/10/2024

Date Started: 04/10/2024

Date Completed: 10/10/2024

Test Methods: Details available on request (refer to SOP code against relevant result/s)

Notes: None

Approved By: David Long, LIMS Manager

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service.

This certificate shall not be reproduced except in full without the prior written approval of the laboratory.

Observations and interpretations are outside of the scope of UKAS accreditation.

Results reported herein relate only to the items supplied to the laboratory for testing.

Results on an Interim Report are not dry-weight corrected.

Where the laboratory is not responsible for the sampling, results apply to the sample(s) as they were received.

The laboratory shall not be responsible for any information that is supplied by the customer that may affect the validity of results.

#### rpsgroup.com

RPS Environmental Management Limited trading as RPS Mountainheath. Registered in England No. 01756175.

13 St Martins Way, Bedford, Bedfordshire, MK42 0LF. T +44 1462 480 400

A member of the RPS Group plc. Terms and conditions apply - copy on request



**Results Summary** 

Report No.: 24-07825-1

Customer Reference: Not Supplied

Customer Order No: P0755263

| Customer Sample No | 24/09538/1<br>SW1 | 24/09538/2<br>SW2 | 24/09538/3<br>SW3 | 24/09538/4<br>SW4 |
|--------------------|-------------------|-------------------|-------------------|-------------------|
| RPS Sample No      | 71037             | 71038             | 71039             | 71040             |
| Sample Type        | WATER             | WATER             | WATER             | WATER             |
| Sample Matrix      | SW                | SW                | SW                | SW                |
| Sampling Date      | 02/10/2024        | 02/10/2024        | 02/10/2024        | 02/10/2024        |
|                    |                   |                   |                   |                   |

| Determinand | CAS No  | Codes | SOP  | RL  | Units |        |        |        |      |
|-------------|---------|-------|------|-----|-------|--------|--------|--------|------|
| acrylamide  | 79-06-1 | N     | L001 | 0.1 | μg/L  | < 0.10 | < 0.10 | < 0.10 | 0.11 |



#### **Deviating Samples**

Report No.: 24-07825-1

Customer Reference: Not Supplied Customer Order No: P0755263

Our policy on Deviating Samples has been implemented in accordance with UKAS Policy on Deviating Samples (TPS63).

RPS is not responsible for the integrity of samples as received, unless RPS personnel performed the sampling. Samples submitted may be declared to be deviating.

Where applicable the analysis method remains UKAS accredited, however results reported for a deviating sample may be compromised.

Where no sampling date was supplied, samples have been declared to be deviating. If the date can be supplied, results may be reissued if assessed not deviating.

Where the sample container used was unsuitable or broken, the sample is flagged as deviating and re-sampling/re-submisson may be required.

| RPS No. | Customer No. Customer ID |     | Date Sampled | Containers Received       | Deviating                 | Reason for Deviation |  |  |  |
|---------|--------------------------|-----|--------------|---------------------------|---------------------------|----------------------|--|--|--|
|         |                          |     |              |                           | GGB500 500 mL green glass |                      |  |  |  |
| 71037   | 24/09538/1               | SW1 |              | 02/10/2024                | bottle                    | No                   |  |  |  |
|         |                          |     |              | GGB500 500 mL green glass |                           |                      |  |  |  |
| 71038   | 24/09538/2               | SW2 |              | 02/10/2024                | bottle                    | No                   |  |  |  |
|         |                          |     |              |                           | GGB500 500 mL green glass |                      |  |  |  |
| 71039   | 24/09538/3               | SW3 |              | 02/10/2024                | bottle                    | No                   |  |  |  |
|         |                          |     |              | GGB500 500 mL green glass |                           |                      |  |  |  |
| 71040   | 24/09538/4               | SW4 |              | 02/10/2024                | bottle                    | No                   |  |  |  |



Report No.: 24-07825-1

| Туре           | Matrix Code | Description                    |  |  |  |
|----------------|-------------|--------------------------------|--|--|--|
| Food           | CEREALPROD  | Cereals, grains & products     |  |  |  |
| Food           | DRIEDFRUIT  | Dried fruits                   |  |  |  |
| Food           | FRIEDBAKED  | Fried or baked food            |  |  |  |
| Food           | LEGUME      | Legumes                        |  |  |  |
| Food           | MEAT        | Meat                           |  |  |  |
| Food           | POWDERED    | Powdered food                  |  |  |  |
| Food           | PULSE       | Pulses (dried legumes)         |  |  |  |
| Food           | VEGETABLES  | Vegetables                     |  |  |  |
| Gas            | TDTUBE      | TD Tube                        |  |  |  |
| Gas            | TENAX       | Tenax Tube                     |  |  |  |
| Gas            | TUBE        | Tube                           |  |  |  |
| Gas            | VAPOUR      | Gas                            |  |  |  |
| Geological     | SED_MAR     | Marine Sediment                |  |  |  |
| Geological     | SED_RIV     | River Sediment                 |  |  |  |
| Geological     | SLUDG_SOL   | Sludge (solid only)            |  |  |  |
| Geological     | SOIL        | Soil                           |  |  |  |
| Liquid         | BEVERAGE    | Beverage                       |  |  |  |
| Liquid         | BLOOD       | Blood                          |  |  |  |
| Liquid         | CONDENSATE  | Condensate                     |  |  |  |
| Liquid         | FOAM LIQ    | Liquid foam                    |  |  |  |
| Liquid         | FORMULATN   | Formula                        |  |  |  |
| Liquid         | LEACHATE    | Leachate                       |  |  |  |
| Liquid         | OIL/GREASE  | Oil or grease                  |  |  |  |
| Liquid         | SLUDG_LIQ   | Sludge (liquid only)           |  |  |  |
| Liquid         | SOLVENT     | Solvent                        |  |  |  |
| Liquid         | URINE       | Urine                          |  |  |  |
| Sludge         | SLUDG_WHL   | Sludge for bulk route          |  |  |  |
| Solid          | BADGE       | Badge                          |  |  |  |
| Solid          | BEDDING     | Bedding                        |  |  |  |
| Solid          | BIOTA       | Biota (general)                |  |  |  |
| Solid          | BIOTA_F     | Biota (fish)                   |  |  |  |
| Solid          | BIOTA_SF    | Biota (shellfish)              |  |  |  |
| Solid          | CONSTRCTN   | Construction materials         |  |  |  |
| Solid          | FABRIC      | Fabrics & furnishing materials |  |  |  |
| Solid          | FEED        | Animal feed                    |  |  |  |
| Solid          | FERTILISER  | Fertiliser                     |  |  |  |
| Solid          | FILTER      | Filter                         |  |  |  |
| Solid          | FOAM        | Solid foam material            |  |  |  |
| Solid          | LATEX       | Latex/Rubber                   |  |  |  |
| Solid          | PACKAGING   | Packaging material             |  |  |  |
| Solid          | PAPER       | Paper                          |  |  |  |
| Solid          | PLANT       | Plant (vegetation)             |  |  |  |
| Solid          | POWDER      | Powder                         |  |  |  |
| Solid          | SWAB        | Swab                           |  |  |  |
| Water          | BAL         | Ballast Water                  |  |  |  |
| Water          | BIL         | Bilge Water                    |  |  |  |
| Water          | DW          | Drinking Water                 |  |  |  |
| Water          | EFFLUENT    | Effluent                       |  |  |  |
| Water          | GW          | Ground Water                   |  |  |  |
|                |             |                                |  |  |  |
| Water          | INFLUENT    | Influent Mine Water            |  |  |  |
| Water          | MINEW       | Mine Water                     |  |  |  |
| Water          | SALTW       | Salt Water                     |  |  |  |
| Water<br>Water | SW<br>TW    | Surface Water Tap Water        |  |  |  |
|                |             |                                |  |  |  |



Report No.: 24-07825-1

| Key Code         | Description                                                                                         |
|------------------|-----------------------------------------------------------------------------------------------------|
| N                | Not Accredited Test                                                                                 |
| U                | UKAS Accredited Test - UKAS accreditation is only implied if the report carries the UKAS logo       |
| UF               | UKAS Flexible Scope Test                                                                            |
| М                | MCERTS Accredited Test - MCERTS accreditation is only implied if the report carries the MCERTS logo |
| 0                | Marine Management Organisation (MMO) Validated                                                      |
| SN               | Subcontracted to approved laboratory not accredited for the test                                    |
| SU               | Subcontracted to approved laboratory UKAS Accredited for the test                                   |
| SM               | Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test                            |
| SIN              | Subcontracted to internal RPS Group laboratory not accredited for the test                          |
| SIU              | Subcontracted to internal RPS Group laboratory UKAS Accredited for the test                         |
| SIM              | Subcontracted to internal RPS Group laboratory MCERTS/UKAS Accredited for the test                  |
| *                | Modified standard method                                                                            |
| I/S (in results) | Insufficient Sample                                                                                 |
| U/S (in results) | Unsuitable Sample                                                                                   |
| S/C (in results) | See Comments                                                                                        |
| ND (in results)  | Not Detected                                                                                        |
| DW (in units)    | Results are expressed on a dry weight basis                                                         |
| L (in results)   | Result is outside normal limits                                                                     |
| Sample Type      | Sample Retention and Disposal Period                                                                |
| Foodstuff        | 1 month (if frozen) from the issue date of this report                                              |
| Waters           | 2 weeks from the issue date of this report                                                          |
| Other Liquids    | 1 month from the issue date of this report                                                          |
| Solids / Soils   | 1 month from the issue date of this report                                                          |
| Sediments        | 1 month from the issue date of this report                                                          |

Note: Sample retention may be subject to agreement with the customer for particular projects

| Dev code | Description                                         |
|----------|-----------------------------------------------------|
| D        | No sampling date provided.                          |
| Т        | No sampling time provided.                          |
| Z        | Temperature of samples exceeded in transit/storage. |
| V        | Excessive headspace for volatile determinands.      |
| Р        | Sample submitted without required preservative(s).  |
| С        | Incorrect container.                                |
| Н        | Holding time exceeded (sampling to extraction).     |
| X        | Holding time exceeded (sampling to receipt).        |

Note: Where the following information is included in this certificate, it has usually been supplied by the customer: Customer Sample ID, Sample Location, Sample Depth, Sampling Date and Sampling Time. The laboratory shall not be responsible for any information that is supplied by the customer that may affect the validity of results.

| D. | Sampling notes, including in situ parameter readings |
|----|------------------------------------------------------|
|    |                                                      |
|    |                                                      |
|    |                                                      |
|    |                                                      |
|    |                                                      |
|    |                                                      |
|    |                                                      |
|    |                                                      |
|    |                                                      |
|    |                                                      |
|    |                                                      |
|    |                                                      |
|    |                                                      |
|    |                                                      |
|    |                                                      |
|    |                                                      |
|    |                                                      |



## **Groundwater Monitoring**

**Position ID: SW1** 

Monitoring Date: 02 Oct 2024 14:32:12

Round: W/C 30.09.2024

Record ID: SSLGW000593421

## **Groundwater Monitoring Has Been Accepted**

## **Project Information (Incomplete)**

| Project ID | Name               | Client              | Project Manager |
|------------|--------------------|---------------------|-----------------|
| 765938     | EMG Surface Waters | Fairhurst Group LLP | Richard Law     |

#### **Previous Weather Observations**

| Weather     | Air Temp | Ground Surface | Wind   |
|-------------|----------|----------------|--------|
| Cloudy, dry | 12.0     | Wet            | Medium |

#### Water Monitoring Device

| Device                      | Calibration Date | Daily Check |
|-----------------------------|------------------|-------------|
| Smart Troll / In Situ / ST1 | 02/10/2024       | [X] Yes     |

## **Location and Well Information (Incomplete)**

#### Installation information

| Datum             | Description | Offset<br>(m) | Ref | Length<br>(m) | Diameter<br>(mm) | Material          | Туре              | Well Depth<br>(m) | Previous<br>Water Depth<br>(m) |
|-------------------|-------------|---------------|-----|---------------|------------------|-------------------|-------------------|-------------------|--------------------------------|
| <select></select> | NA          |               | 1   |               |                  | <select></select> | <select></select> |                   |                                |

### Pre-Testing Remarks

| Borehole accessible? | Padlock?          | Bung?             | Location Label?   | Additional Remarks                                                                                          |
|----------------------|-------------------|-------------------|-------------------|-------------------------------------------------------------------------------------------------------------|
| Yes                  | <select></select> | <select></select> | <select></select> | No water of any kind at map location for SW1, samples taken from nearby location w3w: opposite.burst.regret |

GPS Location 53° 47' 43.122" N 1° 35' 15.706" W

| Recorded Time | Water Depth from Datum (m) |  |  |  |
|---------------|----------------------------|--|--|--|
|               |                            |  |  |  |

## **LNAPL and DNAPL (Incomplete)**

## **Well Headspace**

Well Headspace Reading (PID/FID) (ppm)

## **Purging (Incomplete)**

Sampling Method (X) <Select> ( ) Peristaltic ( ) Bladder ( ) Other

## **Probe Readings**

Units

| Temp(°C) | Conductivity           | DO (mg/l) | рН | ORP(mV) | Salinity | Turb | TDS |  |
|----------|------------------------|-----------|----|---------|----------|------|-----|--|
|          | (X) uS/cm<br>( ) mS/cm |           |    |         |          |      |     |  |

#### **Probe Readings Table**

#### **Probe Readings**

| Time     | Тетр  | Cond    | D.O. | рН | ORP    | Eh     | DTW(m) | Dry |
|----------|-------|---------|------|----|--------|--------|--------|-----|
| 10:53:49 | 13.75 | 2509.00 | 8.32 | 8  | 168.90 | 373.42 |        | []  |

DTW(m) = Depth to Water, TDS = Total Dissolved Solids

The Green highlights denote the Stabilisation Criteria for Low Flow Sampling according to USEPA (EPA/504/S-95/504 April 1996) and RSK technical procedure TP210 (2020)

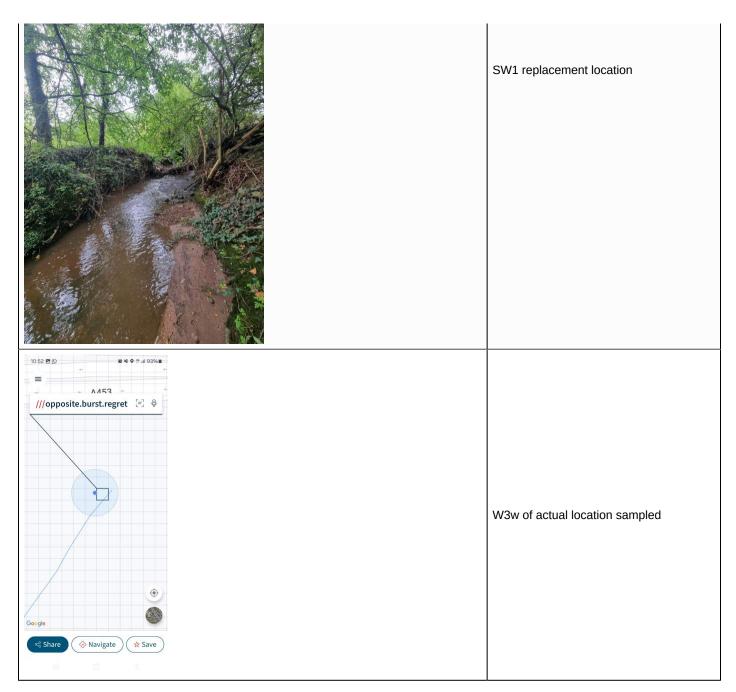
#### Post Test remarks

| Colour | Odour | Visible oily sheen |
|--------|-------|--------------------|
| Clear  | No    | No                 |

## **Samples**

#### Samples Taken Table

| Depth | Sample<br>Ref | Sample<br>Type | Containers used                                                                                         | Flow Rate |
|-------|---------------|----------------|---------------------------------------------------------------------------------------------------------|-----------|
| 0.00  | SW1           | EW             | 2 x Glass Bottle 1 Litre, 1 x Plastic Bottle 500ml, 2 x Vial, 1 x Blue Top, 1 x Red Top, 1 x Yellow Top |           |


Sample Collection Time 10:53:26

Sample Notes See photos for adjusted location

#### **Pictures**

**Pictures** 

| Picture Picture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Description                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location on map completely dry, no<br>waterways at all |
| Geogle  DE74 2QD  A Start  Save  A S | Location sampled from                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |



## **Completion record**

BH Secured on Leaving? (X) <Select> ( ) Yes ( ) No

SSL Completion Confirmation by Author



Data Collected By

James Verity

james.verity@soils.co.uk

**Additional Email Distribution** 

External Email Distribution

0 records

| Reviewer Sign Off       |                                              |  |  |
|-------------------------|----------------------------------------------|--|--|
| Reviewer Sign Off       | ( )<br>(X) Accepted<br>( ) Rejected          |  |  |
| Send to Data Processing | ( ) <select><br/>(X) Yes<br/>( ) No</select> |  |  |
| Reviewer: Signature     |                                              |  |  |
|                         |                                              |  |  |
| R.                      |                                              |  |  |

Reviewer Name

Radka Pandulova Radka.Pandulova@soils.co.uk



## **Groundwater Monitoring**

**Position ID: SW2** 

Monitoring Date: 02 Oct 2024 14:28:03

Round: W/C 30.09.2024

Record ID: SSLGW000593420

## **Groundwater Monitoring Has Been Accepted**

## **Project Information (Incomplete)**

| Project ID | Name               | Client              | Project Manager |
|------------|--------------------|---------------------|-----------------|
| 765938     | EMG Surface Waters | Fairhurst Group LLP | Richard Law     |

#### Weather Observations

| Weather     | Air Temp | Ground Surface | Wind   |
|-------------|----------|----------------|--------|
| Cloudy, dry | 12.0     | Wet            | Medium |

## Water Monitoring Device

| Device                      | Calibration Date | Daily Check |
|-----------------------------|------------------|-------------|
| Smart Troll / In Situ / ST1 | 02/10/2024       | [X] Yes     |

## **Location and Well Information (Incomplete)**

#### Installation information

| Datum             | Description | Offset<br>(m) | Ref | Length<br>(m) | Diameter<br>(mm) | Material          | Туре              | Well Depth<br>(m) | Previous<br>Water Depth<br>(m) |
|-------------------|-------------|---------------|-----|---------------|------------------|-------------------|-------------------|-------------------|--------------------------------|
| <select></select> | NA          |               | 1   |               |                  | <select></select> | <select></select> |                   |                                |

#### Pre-Testing Remarks

| Borehole accessible? | Padlock?          | Bung?             | Location Label?   | Additional Remarks   |
|----------------------|-------------------|-------------------|-------------------|----------------------|
| Yes                  | <select></select> | <select></select> | <select></select> | W3w pans.comic.plums |

GPS Location 53° 47' 43.049" N 1° 35' 15.88" W

| Recorded Time | Water Depth from Datum (m) |
|---------------|----------------------------|
|               |                            |

| _NAPL ar                      | nd DNA   | APL (lı  | ncomplete             | )    | <u> </u>      |          |         |          |     |
|-------------------------------|----------|----------|-----------------------|------|---------------|----------|---------|----------|-----|
| <b>Nell Heac</b>              | Ispace   | <b>.</b> |                       |      |               |          |         |          |     |
| Well Headspa<br>(PID/FID) (pp |          | ng       |                       |      |               |          |         |          |     |
| Purging (                     | Incom    | plete)   |                       |      |               |          |         |          |     |
| Sampling Met                  | hod      |          | (X) <select></select> | (    | ) Peristaltic | ( )      | Bladder | ( ) Othe | er  |
| Probe Rea                     | adings   |          |                       |      |               |          |         |          |     |
| Temp(°C)                      | Condu    | ctivity  | DO (mg/l)             | рН   | ORP(mV)       | Salinity | Turb    | TDS      |     |
|                               | (X) uS   |          |                       |      |               |          |         |          |     |
| robe Reading                  | js Table |          | •                     | •    |               | -        |         | •        | 1   |
| Probe Readin                  | gs       |          |                       |      |               |          |         |          |     |
| Time                          |          | Тетр     | Cond                  | D.O. | рН            | ORP      | Eh      | DTW(m)   | Dry |
| 10:20:38                      |          | 13.32    | 2633.00               | 7.78 | 7.89          | 183.60   | 388.95  |          | [ ] |

| Time     | Тетр  | Cond    | D.O. | рН   | ORP    | Eh     | DTW(m) | Dry |
|----------|-------|---------|------|------|--------|--------|--------|-----|
| 10:20:38 | 13.32 | 2633.00 | 7.78 | 7.89 | 183.60 | 388.95 |        | []  |

DTW(m) = Depth to Water, TDS = Total Dissolved Solids

The Green highlights denote the Stabilisation Criteria for Low Flow Sampling according to USEPA (EPA/504/S-95/504 April 1996) and RSK technical procedure TP210 (2020)

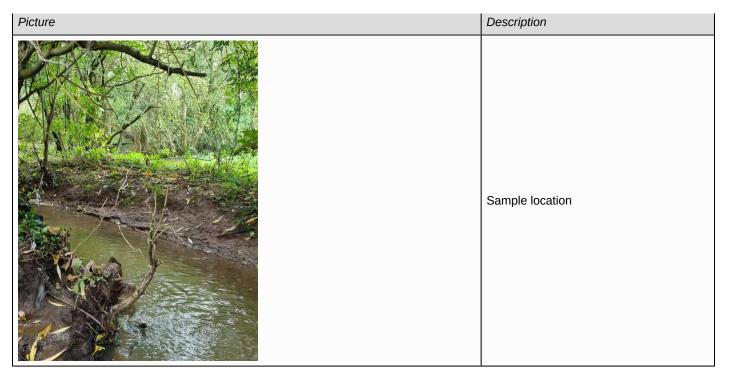
#### Post Test remarks

| Colour | Odour | Visible oily sheen |
|--------|-------|--------------------|
| Clear  | No    | No                 |

## **Samples**

#### Samples Taken Table

| Depth | Sample<br>Ref | Sample<br>Type | Containers used                                                                                         | Flow Rate |
|-------|---------------|----------------|---------------------------------------------------------------------------------------------------------|-----------|
| 0.00  | SW2           | EW             | 2 x Glass Bottle 1 Litre, 1 x Plastic Bottle 500ml, 2 x Vial, 1 x Blue Top, 1 x Red Top, 1 x Yellow Top |           |


Sample Collection Time 10:20:59

Sample Notes

## **Pictures**

**Pictures** 

1 record



## **Completion record**

BH Secured on Leaving? ( ) <Select> (X) Yes ( ) No

SSL Completion Confirmation by Author



Data Collected By

**Additional Email Distribution** 

External Email Distribution 0 records

## **Reviewer Sign Off**

Reviewer Sign Off

(X) Accepted
() Rejected

() <Select>
Send to Data Processing

(X) Yes
() No

Reviewer: Signature



■ Radka Pandulova



## **Groundwater Monitoring**

**Position ID: SW3** 

Monitoring Date: 02 Oct 2024 14:39:41

Round: W/C 30.09.2024

Record ID: SSLGW000593422

## **Groundwater Monitoring Has Been Accepted**

## **Project Information (Incomplete)**

| Project ID | Name               | Client              | Project Manager |
|------------|--------------------|---------------------|-----------------|
| 765938     | EMG Surface Waters | Fairhurst Group LLP | Richard Law     |

#### **Previous Weather Observations**

| Weather     | Air Temp | Ground Surface | Wind   |
|-------------|----------|----------------|--------|
| Cloudy, dry | 12.0     | Wet            | Medium |

#### Water Monitoring Device

| Device                      | Calibration Date | Daily Check |
|-----------------------------|------------------|-------------|
| Smart Troll / In Situ / ST1 | 02/10/2024       | [X] Yes     |

## **Location and Well Information (Incomplete)**

#### Installation information

| Datum             | Description | Offset<br>(m) | Ref | Length<br>(m) | Diameter<br>(mm) | Material          | Туре              | Well Depth<br>(m) | Previous<br>Water Depth<br>(m) |
|-------------------|-------------|---------------|-----|---------------|------------------|-------------------|-------------------|-------------------|--------------------------------|
| <select></select> | NA          |               | 1   |               |                  | <select></select> | <select></select> |                   |                                |

#### Pre-Testing Remarks

| Borehole accessible? | Padlock?          | Bung?             | Location Label?   | Additional Remarks           |
|----------------------|-------------------|-------------------|-------------------|------------------------------|
| Yes                  | <select></select> | <select></select> | <select></select> | W3w: assets.wicked.highlight |

GPS Location 53

53° 47' 42.961" N 1° 35' 15.987" W

| Recorded Time | Water Depth from Datum (m) |
|---------------|----------------------------|
|               |                            |

| LNAPL and DNAPL (Incomplete) |  |  |
|------------------------------|--|--|
| Well Headspace               |  |  |
| Well Headspace Reading       |  |  |

# **Purging (Incomplete)**

Sampling Method (X) <Select> ( ) Peristaltic ( ) Bladder ( ) Other

## **Probe Readings**

(PID/FID) (ppm)

Units

| Temp(°C) | Conductivity           | DO (mg/l) | рН | ORP(mV) | Salinity | Turb | TDS |  |
|----------|------------------------|-----------|----|---------|----------|------|-----|--|
|          | (X) uS/cm<br>( ) mS/cm |           |    |         |          |      |     |  |

#### **Probe Readings Table**

**Probe Readings** 

| Time     | Тетр  | Cond    | D.O. | рН   | ORP    | Eh     | DTW(m) | Dry |
|----------|-------|---------|------|------|--------|--------|--------|-----|
| 11:29:54 | 13.28 | 2604.30 | 8.22 | 7.95 | 167.40 | 372.75 |        | []  |

DTW(m) = Depth to Water, TDS = Total Dissolved Solids

The Green highlights denote the Stabilisation Criteria for Low Flow Sampling according to USEPA (EPA/504/S-95/504 April 1996) and RSK technical procedure TP210 (2020)

#### Post Test remarks

| Colour | Odour | Visible oily sheen |
|--------|-------|--------------------|
| Clear  | No    | No                 |

## **Samples**

#### Samples Taken Table

| Depth | Sample<br>Ref | Sample<br>Type | Containers used                                                                                         | Flow Rate |
|-------|---------------|----------------|---------------------------------------------------------------------------------------------------------|-----------|
| 0.00  | SW3           | EW             | 2 x Glass Bottle 1 Litre, 1 x Plastic Bottle 500ml, 2 x Vial, 1 x Blue Top, 1 x Red Top, 1 x Yellow Top |           |

Sample Collection Time 11:29:09

Sample Notes

### **Pictures**

Pictures

1 record



## **Completion record**

BH Secured on Leaving?

(X) <Select>

() Yes

( ) No

SSL Completion Confirmation by Author



Data Collected By

James Verity

james.verity@soils.co.uk

### **Additional Email Distribution**

External Email Distribution

0 records

( ) No

## **Reviewer Sign Off**

Reviewer Sign Off
(X) Accepted
() Rejected
() <Select>
Send to Data Processing
(X) Yes

Reviewer: Signature



■ Radka Pandulova



## **Groundwater Monitoring**

**Position ID: SW4** 

Monitoring Date: 02 Oct 2024 14:42:59

Round: W/C 30.09.2024

Record ID: SSLGW000593423

## **Groundwater Monitoring Has Been Accepted**

## **Project Information (Incomplete)**

| Project ID | Name               | Client              | Project Manager |
|------------|--------------------|---------------------|-----------------|
| 765938     | EMG Surface Waters | Fairhurst Group LLP | Richard Law     |

#### **Previous Weather Observations**

| Weather     | Air Temp | Ground Surface | Wind   |
|-------------|----------|----------------|--------|
| Cloudy, dry | 12.0     | Wet            | Medium |

#### Water Monitoring Device

| Device                      | Calibration Date | Daily Check |
|-----------------------------|------------------|-------------|
| Smart Troll / In Situ / ST1 | 02/10/2024       | [X] Yes     |

## **Location and Well Information (Incomplete)**

#### Installation information

| Datum             | Description | Offset<br>(m) | Ref | Length<br>(m) | Diameter<br>(mm) | Material          | Туре              | Well Depth<br>(m) | Previous<br>Water Depth<br>(m) |
|-------------------|-------------|---------------|-----|---------------|------------------|-------------------|-------------------|-------------------|--------------------------------|
| <select></select> | NA          |               | 1   |               |                  | <select></select> | <select></select> |                   |                                |

### Pre-Testing Remarks

| Borehole accessible? | Padlock?          | Bung?             | Location Label?   | Additional Remarks               |
|----------------------|-------------------|-------------------|-------------------|----------------------------------|
| Yes                  | <select></select> | <select></select> | <select></select> | W3w: presented.concerts.factored |

GPS Location 53° 47' 43.095" N 1° 35' 15.978" W

| Recorded Time | Water Depth from Datum (m) |
|---------------|----------------------------|
|               |                            |

| LNAPL and DNAPL (Incomplete) |  |  |
|------------------------------|--|--|
| Wall Handonson               |  |  |

## **Well Headspace**

Well Headspace Reading (PID/FID) (ppm)

## **Purging (Incomplete)**

Sampling Method (X) <Select> ( ) Peristaltic ( ) Bladder ( ) Other

## **Probe Readings**

Units

| Temp(°C) | Conductivity           | DO (mg/l) | рН | ORP(mV) | Salinity | Turb | TDS |  |
|----------|------------------------|-----------|----|---------|----------|------|-----|--|
|          | (X) uS/cm<br>( ) mS/cm |           |    |         |          |      |     |  |

#### **Probe Readings Table**

#### **Probe Readings**

| Time     | Тетр  | Cond    | D.O. | рН   | ORP    | Eh     | DTW(m) | Dry |
|----------|-------|---------|------|------|--------|--------|--------|-----|
| 11:42:52 | 12.78 | 2914.50 | 8.57 | 7.88 | 169.30 | 374.65 |        | []  |

DTW(m) = Depth to Water, TDS = Total Dissolved Solids

The Green highlights denote the Stabilisation Criteria for Low Flow Sampling according to USEPA (EPA/504/S-95/504 April 1996) and RSK technical procedure TP210 (2020)

#### Post Test remarks

| Colour | Odour | Visible oily sheen |
|--------|-------|--------------------|
| Clear  | No    | No                 |

## **Samples**

#### Samples Taken Table

| Depth | Sample<br>Ref | Sample<br>Type | Containers used                                                                                         | Flow Rate |
|-------|---------------|----------------|---------------------------------------------------------------------------------------------------------|-----------|
| 0.00  | SW4           | EW             | 2 x Glass Bottle 1 Litre, 1 x Plastic Bottle 500ml, 2 x Vial, 1 x Blue Top, 1 x Red Top, 1 x Yellow Top |           |

Sample Collection Time 11:42:01

Sample Notes

### **Pictures**

Pictures

1 record



## **Completion record**

BH Secured on Leaving?

(X) <Select>

() Yes

( ) No

SSL Completion Confirmation by Author



Data Collected By

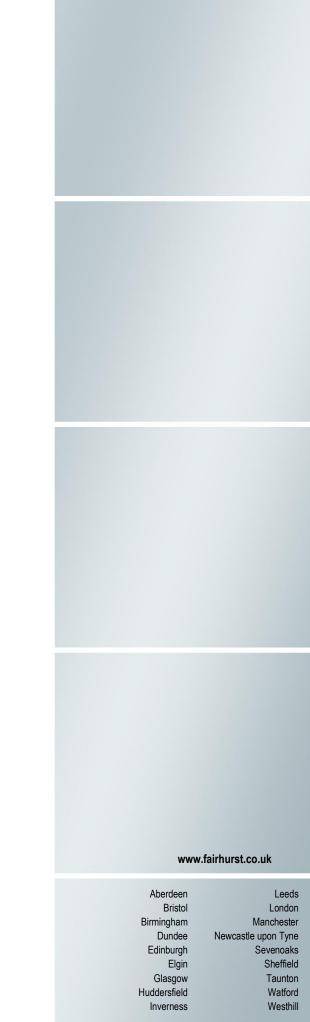
James Verity

james.verity@soils.co.uk

### **Additional Email Distribution**

External Email Distribution 0 records

## **Reviewer Sign Off**


( ) Reviewer Sign Off (X) Accepted ( ) Rejected ( ) <Select>

Send to Data Processing (X) Yes ( ) No

Reviewer: Signature



■ Radka Pandulova





CIVIL ENGINEERING • STRUCTURAL ENGINEERING • TRANSPORTATION • ROADS & BRIDGES
PORTS & HARBOURS • GEOTECHNICAL & ENVIRONMENTAL ENGINEERING • PLANNING &
DEVELOPMENT • WATER SERVICES • HEALTH & SAFETY / CDM SERVICES